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The East Asian–Indonesian–Australian monsoon (EAIAM) regime is the largest low–latitude monsoon system.13

It links the Earth’s hemispheres, providing a planetary–scale heat source that drives the global circulation dur-14

ing boreal winter [1]. At both seasonal and inter–seasonal time scales, the summer monsoon of one hemisphere15

is linked via outflows from the winter monsoon of the opposing hemisphere [2]. Over longer times, likely phase16

relationships between the East Asian summer monsoon (EASM) and Indonesian–Australian summer monsoon17

(IASM) are only beginning to be understood [3–6]. With this uncertainty come questions of likely long–term18

adjustments to future greenhouse–triggered climate change, and whether these changes could ‘lock–in’ possible19

phase relationships between the IASM and EASM regimes in a region where billions of people’s lives depend20

highly on monsoon–related rainfall. Here we show that our newly–developed non–linear time series analysis21

technique [7] enables us to confidently identify monsoon regime changes at millennial to sub–centennial time22

scales and identify a see–saw relationship over some 9000 years – with wet and dry monsoon states essentially23
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opposingly phased. Our results provide a step towards a better understanding of the centennial– to millennial–24

scale relationships within the EAIAM regime.25

We use the high resolution speleothem paleoproxy records of KNI-51 (15.30◦S, 128.61◦E) from northwestern26

Australia and Dongge Cave (25.28◦N, 108.08◦E) from southern China (Fig.1) to outline the summer monsoon states27

of the last c. 9000 years. The details of the U/Th chronology and associated stable isotope records are provided by28

Denniston et al. [5] and Wang et al. [9] respectively. Both caves are well placed to capture the respective summer29

monsoon regimes located at the end points of the broader EAIAM system (Fig. 1 and Supp. Mat.).30

The records of Dongge Cave and KNI-51, as with many paleoclimate proxy records, are irregularly sampled,31

i.e.: the time between two consecutive measurements is not constant and may vary largely along the length of the32

record. Most time series analysis methods, however, require regular sampling. Traditionally, some form of interpola-33

tion is used to deal with these irregularities, but this introduces additional information into the time series with much34

higher uncertainty than the real observations [10]. To avoid corrupting the quality of the speleothem proxy records, we35

developed a new method (for details, see [7,11]) based on techniques used for neurological data [12]. This method, the36

Transformation Cost Time Series (TACTS) method, produces a regularly sampled time series and allows us to identify37

regime changes using standard time series analysis.38

[Figure 1 about here.]39

In essence, the TACTS method determines the ‘cost’ of transforming one segment of the record into the fol-40

lowing segment. For this transformation we allow three possible modifications: (i) changing the amplitude of a data41

point, (ii) shifting a data point in time, and (iii) creating or deleting a data point. The ‘cost’ for changing the amplitude42

and shifting a data point is linearly dependent on the size of the modification. On the other hand, creating and deleting43

data points should be ‘expensive’ enough to not favour this modification over the other two points (see Supp. Mat. for44

an illustration of this method). The resulting time series is regularly sampled, and we analyse it using recurrence plot45

analysis and derive the determinism. This is a measure of predictability, and is therefore well suited to detect regime46
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changes in the time series [13] (see Supp. Mat. for details).47

[Figure 2 about here.]48

Our analysis of the Dongge Cave and KNI-51 records reveals alternating periods of statistically significant49

strong/weak monsoon states of centennial to millennial durations (Fig. 2). The shaded bands in the figure depict 90%50

confidence intervals (see Supp. Mat.), with wet/dry states defined as exceeding these bands. Prolonged wet/dry states51

are recognised, and the comparison given by the coloured bands in Fig. 2 highlights that our quantitative technique is52

able to reveal new details of the monsoon dynamics.53

The wet/dry regimes identified improve upon previous, qualitative interpretations of the proxy records [5,9,14].54

Here we provide a detailed discussion of where our method supports, corrects and improves the analysis and inter-55

pretation of previous studies. We particularly focus on regimes which are newly identified or previously incorrectly56

interpreted.57

In the KNI-51 record (north west Australian summer monsoon) the major wet (dry) phases occur between58

8.5-6.4 ka, (6.3-5.0 ka), 5.0-4.0 ka, possibly extending to 3.0 ka, (3.0-1.4 ka), 1.3-0.9 ka, with a transition at 0.9 ka59

to the present monsoon regime. Embedded within these time intervals are additional events of centennial to sub–60

centennial duration. The major phase differences of our analysis show some correspondence with inferences drawn61

from a Holocene pollen/sediment record of monsoon events [15], but our analyses offer improved time resolution and62

greater details of the inherent variability within major monsoon phases.63

The Dongge Cave monsoon record has been discussed in detail by Wang et al. [9] and further developed by64

Hu et al. [14]. Wang et al. [9] recognised eight weak monsoon events lasting 100 to 500 years: at 0.5 ka, 1.6 ka, 2.765

ka, 4.4 ka, 5.5 ka, 6.3 ka, 7.2 ka and 8.3 ka. While adding some details, the Hu et al. [14] reconstructions essentially66

concur with those of Wang et al. [9]. Our results indicate wet (dry) regime intervals between (8.2-7.6 ka), 7.6-7.2 ka,67

(7.1-6.9 ka), (6.4-5.8 ka), 5.8-5.0 ka, (5.0-4.0 ka), 3.0-2.7 ka, (2.2-2.0 ka), 1.9-0.8 ka and (0.7-0.4 ka).68
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Our analysis has revealed details for KNI-51 and Dongge Cave not previously recognised (Fig.2). In the KNI-69

51 record two events, absent from Denniston et al. [5], occur at 6.6-6.4 ka (wet) and 7.0-6.8 ka (dry). Furthermore,70

our results improve upon the findings of Denniston et al. [5] and McGowan et al. [15] by reclassifying previously71

misinterpreted regimes. We identify a wet regime at 3.2-3.1 ka (wet) previously interpreted as dry [15] and similarly72

a dry regime at 7.6-7.5 ka incorrectly claimed to be wet by Denniston et al. [5]. Similarly, the results of our Dongge73

Cave analysis contradict the conclusions of Hu et al. [14] for the time periods 6.2-6.1 ka (dry) and 7.8-7.6 ka (dry).74

In addition, there are three events identified by Hu et al. that are not statistically significant in our analysis (3.4-3.275

ka, 6.9-6.3 ka and 8.8-8.2 ka). We assert confidence in these revisions, as they are based on a rigorous, quantitative76

analysis, rather than rudimentary visual comparison of data sets.77

Moreover, our results reveal a striking wet–dry, opposing relationship between the IASM [5] and EASM [9]78

(Fig. 2). The only time when this see–saw relationship is not observed is during 7.6-7.2 ka, when both monsoon79

records show a ‘wet state’. Over the entire time scale, the cross–correlation of the determinism time series is -0.27,80

and while this affirms an antiphased relationship, it does not capture the strong correspondence between the statisti-81

cally significant wet/dry monsoon states. In fact the antiphased relationship is much stronger, if only the statistical82

significant parts of the time series are used and the internal variability on sub–centennial to decadal time scales is83

ignored. This may be calculated using a step function filter, yielding a cross–correlation of -0.33. Therefore the vari-84

ability at sub–centennial to decadal time scales in both the Dongge Cave and KNI-51 records is emphasised; such85

short–term variability is evident in present day monsoon records from both regions [16].86

While the details of the controls and processes determining the function and latitudinal extent of the respective87

summer monsoons are more complex [1, 2] than simply relating them to the position of the Intertropical Convergence88

Zone (ITCZ), the ITCZ provides a convenient metric of monsoon extent [1, 17]. For the broader EAIAM history,89

the displacement of the ITCZ is a driver that has been advocated in a range of Quaternary paleoclimate studies [18–90

21]. The argument recognises that the ITCZ is displaced towards the warmer hemisphere in response to differential91

cooling [22–24]. This is an attractive and apparently straightforward explanation, with a caveat that the ITCZ over92
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the region of the West Pacific Warm Pool (i.e. the Maritime Continent) is much less well defined than over the wider93

Pacific and Indian Oceans, with a more complex south–north (north–south) seasonal migration pattern [17, 25, 26].94

In explaining the Dongge Cave δ18O record, Wang et al. [9] appeal to a likely displacement of the ITCZ driven95

by solar variability. Their basis for this claim is the use of the atmospheric ∆14C record as a proxy for solar activity,96

with which they obtain a correlation of 0.3 with their speleothem δ18O record. We extend this claim further and ask97

whether the Holocene antiphase relationship that we have uncovered in the summer monsoons of the overall EAIAM98

is driven by solar variability.99

To establish this, we compare the determinism–measure of solar activity with that derived from the EASM100

and IASM proxy records. The analysis identifies a statistically significant correlation (see Supp. Mat. for details)101

between solar activity and both records from Dongge Cave (0.29) and KNI-51 (-0.32). Thus, when predictability102

of solar activity is high (low), the Dongge Cave record indicates a strong (weak) summer monsoon, while northern103

Australia experiences a weak (strong) summer monsoon. Increased predictability of solar activity corresponds to104

periods of a consistently high number of solar ‘events’, increasing the solar irradiance received by the Earth. Positive105

correlation with the Dongge Cave record therefore indicates a direct control, whereby periods of increased solar106

activity enhance the summer monsoon over East Asia. The asymmetric response in the Australian monsoon record107

suggests that periods of increased solar irradiance actually decrease monsoon strength. To explain this, we consider108

orbital–scale positioning of the ITCZ. Preferential heating of the Northern Hemisphere during periods of high tilt109

and Northern Hemisphere perihelion, as observed from 9-3 ka, provides a background driver for increased EASM110

strengthening. At a global scale, there is a northward shift in the ITCZ, weakening monsoon activity over north west111

Australia. Coupling this with solar activity, brief periods of increased irradiance would act to shift the ITCZ further112

north, and we would therefore expect a stronger EASM and corresponding weak IASM. This model is supported113

by our analysis, and compounded by the observation that from c.2.5 ka onwards, as orbital controls begin to favour114

the Southern Hemisphere, correspondence between the determinism–measure of solar activity and EASM and IASM115

records diminishes. These findings lead us to conclude that solar activity provides a driver in the see–saw relationship116
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observed between the EASM and IASM over the past 9000 years, modulated by orbital–scale ITCZ positioning.117

A significant body of work is now available that proposes the impact of solar variability on the tropical atmo-118

sphere [27–30]. This work demonstrates that the Hadley and Walker circulation cells are affected by solar variability,119

and through this, trigger an increase in tropical precipitation during periods of high solar activity and an associated120

change in the position of the ITCZ. We demonstrate that solar variability can impact summer monsoon strength, and121

more importantly provides the control of the antiphase relationship between the EASM and IASM over the last 9000122

years. Our results reveal a strong coupling between the monsoons of the two hemispheres, expressed as a see–saw123

relationship, and driven by decadal– to centennial–scale variations in solar activity.124

Methods125

To calculate the transformation cost time series we determine the cost for transformation of one segment into another126

for two successive segments of a time series. Treating each observation as an ‘event’, we seek to transform the events127

in the first segment into those of the second. For a single transformation, this cost is a generalised distance between128

these two segments. Therefore, as a distance, the cost must be a positive number, symmetrical (i.e. transforming the129

first into the second is the same as transforming the second into the first), and must satisfy the triangle inequality.130

The cost associated with each transformation is given by:131

p(c) =
∑

(α,β)∈C {λ0|ta(α)− tb(β)|+

1
m

∑m
k=1 λk|La,k(α)− Lb,k(β)|}+

λS(|I|+ |J | − 2|C|), (1)

where I and J are a set of indices of the events in starting set Sa and the final set Sb, respectively. These sets – Sa132

and Sb – correspond to the events in the two time series segments. The first summation quantifies the cost associated133

with shifting events in time. We sum over the pairs (α, β) ∈ C, where the set C comprises the points that need to134
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be shifted in time. α and β denote the αth event in Sa and βth event in Sb. The coefficient λ0 is the cost factor for135

time shifts. The second summation calculates the cost due to changing the amplitude of events. This involves the136

difference |La,k(α) − Lb,k(β)|, where La,k(α) is the amplitude of the αth event in Sa. The parameter λk has the137

unit of amplitude−1 and the sum is over the different components of the amplitude. That is, if we are dealing with138

one dimensional data m = 1, while for a three dimensional phase space m would be three. The last terms in the cost139

function deal with the events not in C which have to be added or deleted. Note that | · | denotes the size of the set and140

λS is the cost parameter for this operation. Suzuki et al. omitted this parameter, since they chose a cost of one for141

such an operation [11].142

We determine the cost factors λ0, λk based on the time series at hand:

λ0 =
M

total time
(2a)

λk =
M − 1∑M−1

i |La − Lb|
, (2b)

where M is the total number of events in the time series. Note that λ0 is the mean event frequency and λk is the143

inverse of the average amplitude difference.144

The cost factor λS is an optimisation parameter. We constrain λS ∈ [0, 4] and explore the costs of deleting or145

adding an event to our time series. If our time series consists of n + 1 segments of equal length, we can calculate n146

costs for each individual transformation of the segments. Assuming that the costs are linearly independent, the central147

limit theorem indicates that the distribution of the costs should be a normal distribution. In particular, when dealing148

with non-stationary data we find that changing λS such that the distribution becomes normal greatly improves the skill149

of our time series analysis method.150

For each proxy record, the detrended time series is divided into segment sizes of 20 years containing, on151

average, 4 to 5 points. The final results shown in Fig. 2 are relatively insensitive to the choice of segment size. The152

proportionality parameters for modifications (i) and (ii) are determined from the proxy records and are related to the153

average amplitude and sampling time. The creation and deletion cost factor λ is our optimisation parameter, chosen154
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relative to the other parameters. Determining the costs of transformation provides a measure of how close one segment155

is to the following one and produces a regularly sampled transformation cost time series with a temporal resolution156

of 20 years. Using recurrence plot analysis we are able to quantify the predictability of each segment by deriving the157

determinism [13]. Abrupt transitions into or out of a ‘wet’ or ‘dry’ state are hard to predict, while behaviour within a158

regime follows a somewhat similar pattern throughout. As a result, determinism is particularly effective at identifying159

regime changes (see Supp. Mat. for further details).160
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Figure 1: Top of atmosphere outgoing long wave radiation delimiting the extent of: a) East Asian summer monsoon
(JJA); and b) Indonesian Australian summer monsoon (DJF) [8]. Dongge Cave (dot) and KNI-51 (star)
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Figure 2: Determinism of the two proxy records (a) (red) KNI-51 and (b) (green) Dongge Cave. The determinism
is calculated from the corresponding transformation costs time series and statistical significance is indicated by the
two horizontal bands (see Supp. Mat. for details). High (low) determinism values correspond to wet (dry) monsoon
regimes. The coloured bands (blue indicating wet regimes; brown, dry) provide a comparison of our findings with those
of previous, qualitative studies. In the text we provide a detailed discussion of previously unidentified or incorrectly
identified wet and dry regimes uncovered by our method. (black) Determinism of the solar activity proxy ∆14 C time
series. Cross–correlation between the determinism of the solar activity proxy ∆14 C time series and KNI-51 time
series is r = −0.32, and Dongge Cave time series is r = 0.29 (see Supp. Mat. for details).
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